Soit la fonction f définie sur \mathbb{R} suivante :
f(x)=\dfrac{x^5}{20} - \dfrac{x^3}{2} - x^2 + 10x
On cherche à savoir quel est le maximum de la fonction f sur [0;1] .
Sur quel intervalle la fonction f est-elle dérivable ?
Quelle est la dérivée de f ?
Quelle est la dérivée de f' ?
Comment peut-on factoriser f'' sachant que f''(-1) = 0 ?
Quelles sont les variations de f' ?
Que vaut f'(2) ?
Quel est le signe de f' sur \mathbb{R} ?
Quel est le maximum de f sur [0;1] ?